POMDP Planning for Robust Robot Control
نویسندگان
چکیده
POMDPs provide a rich framework for planning and control in partially observable domains. Recent new algorithms have greatly improved the scalability of POMDPs, to the point where they can be used in robot applications. In this paper, we describe how approximate POMDP solving can be further improved by the use of a new theoretically-motivated algorithm for selecting salient information states. We present the algorithm, called PEMA, demonstrate competitive performance on a range of navigation tasks, and show how this approach is robust to mismatches between the robot’s physical environment and the model used for planning.
منابع مشابه
Tractable Planning under Uncertainty: Exploiting Structure
T HE problem of planning under uncertainty has received significant attention in the scientific community over the past few years. It is now well-recognized that considering uncertainty during planning and decision-making is imperative to the design of robust computer systems. This is particularly crucial in robotics, where the ability to interact effectively with real-world environments is a p...
متن کاملPlanning to see: A hierarchical approach to planning visual actions on a robot using POMDPs
Flexible, general-purpose robots need to autonomously tailor their sensing and information processing to the task at hand. We pose this challenge as the task of planning under uncertainty. In our domain, the goal is to plan a sequence of visual operators to apply on regions of interest (ROIs) in images of a scene, so that a human and a robot can jointly manipulate and converse about objects on ...
متن کاملFlexible POMDP Framework for Human-Robot Cooperation in Escort Tasks
We describe a novel method for ensuring cooperation between human and robot. First, we present a flexible and hierarchical framework based on POMDPs. Second, we introduce a set of cooperative states within the state-space of the POMDP. Third, for ensuring an efficient scalability, the framework partitions the overall task into independent planning modules. Lastly, for a robust execution of the ...
متن کاملHiPPo: Hierarchical POMDPs for Planning Information Processing and Sensing Actions on a Robot
Flexible general purpose robots need to tailor their visual processing to their task, on the fly. We propose a new approach to this within a planning framework, where the goal is to plan a sequence of visual operators to apply to the regions of interest (ROIs) in a scene. We pose the visual processing problem as a Partially Observable Markov Decision Process (POMDP). This requires probabilistic...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کامل